A Poincaré-Hopf type formula for Chern character numbers

نویسندگان

  • Huitao Feng
  • Weiping Li
  • Weiping Zhang
چکیده

For two complex vector bundles admitting a homomorphism with isolated singularities between them, we establish a Poincaré-Hopf type formula for the difference of the Chern character numbers of these two vector bundles. As a consequence, we extend the original Poincaré-Hopf index formula to the case of complex vector fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum double and κ-Poincaré symmetries in (2+1)-gravity and Chern-Simons theory

We review the role of Drinfeld doubles and κ-Poincaré symmetries in quantised (2+1)gravity and Chern-Simons theory. We discuss the conditions under which a given Hopf algebra symmetry is compatible with a Chern-Simons theory and determine this compatibility explicitly for the Drinfeld doubles and κ-Poincaré symmetries associated with the isometry groups of (2+1)-gravity. In particular, we expla...

متن کامل

Equivariant K-theory, twisted Chern character, index pairings, Poincaré duality and orientation for the standard Podleś sphere

The noncommutative spin geometry of the standard Podleś sphere is analyzed and known results are extended by establishing Poincaré duality and orientability. In the discussion of orientability, Hochschild homology is replaced by a twisted version which avoids the dimension drop. The twisted Hochschild cycle representing an orientation is related to the volume form of the distinguished covariant...

متن کامل

A theorem of Poincaré-Hopf type

We compute (algebraically) the Euler characteristic of a complex of sheaves with constructible cohomology. A stratified Poincaré-Hopf formula is then a consequence of the smooth Poincaré-Hopf theorem and of additivity of the Euler-Poincaré characteristic with compact supports, once we have a suitable definition of index. AMS classification: 55N33 57R25

متن کامل

Chern Character, Hopf Algebras, and Brs Cohomology

We present the construction of a Chern character in cyclic cohomology, involving an arbitrary number of associative algebras in contravariant or covariant position. This is a generalization of the bivariant Chern character for bornological algebras introduced in a previous paper [35], based on Quillen superconnections and heat-kernel regularization. Then we adapt the formalism to the cyclic coh...

متن کامل

Cyclic cohomology of Hopf algebras, and a non-commutative Chern-Weil theory

We give a construction of Connes-Moscovici’s cyclic cohomology for any Hopf algebra equipped with a character. Furthermore, we introduce a non-commutative Weil complex, which connects the work of Gelfand and Smirnov with cyclic cohomology. We show how the Weil complex arises naturally when looking at Hopf algebra actions and invariant higher traces, to give a non-commutative version of the usua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009